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“... he who uses force unsparingly, without reference to the bloodshed involved, 

must obtain a superiority if his adversary uses less vigour in its application. The 

former then dictates the law to the latter and both proceed to the extremities to which 

the only limitations are those imposed by the amount of counteracting force on each 

side.” 

von Clausewitz
1
  

 

INTRODUCTION 

 

What government would send Australians to fight a mostly automated enemy? What 

commander would risk casualties from close combat against robots? The sacrifice of a single 

soldier fighting robots, churned out by their hundreds and replaced nearly immediately, will 

surely prompt the question: Is the fight worth the cost? If the purpose of war is to “impose 

one’s will on an adversary” 
2
, and victory is about “defeating an enemy’s will to fight” 

3
, the 

deployment of Autonomous Weapon Systems (AWS) immediately disrupts a Center of 

Gravity (COG) based on the value of people. Australia is vulnerable to such disruption, and 

as illustrated by the quote above, liable to be subordinate to our adversaries if we cannot fight 

such threats with a greater intensity and freedom of action.  This means that fielding AWS 

needs to be central to our strategy.   

 

The premise of this paper is that future war will devolve to AWS. The timeline for the empty 

or fully autonomous battlespace is likely measured in decades.  However, early AWS 

demonstrators, with significant limitations in targeting, state estimation and navigation, can 

be developed now. The long term goal will be to ultimately supplant human involvement in 

close combat and other dangerous tasks.  

 

The key questions to be asked are whether remotely operated systems hold an advantage over 

manned systems and whether fully automated systems hold a similar advantage over 

remotes? If the answers to those questions are affirmative, it can be shown that the best 

response in an adversarial scenario is for both sides to develop AWS. The side that does not 

develop AWS, is at a significant disadvantage. 

 

 

 

 

SCOPE 
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This paper will examine AWS as they may be applicable to the Land Domain. It will examine 

ethical requirements and then define some of the technical background to AWS, 

characterising Artificial Intelligence (AI) and Robotics and Autonomous Systems (RAS). The 

ways AWS may be exploited will be examined, followed by consideration of lines of effort 

that enable Australia to support the development and sustainment of AWS. Finally we look at 

countermeasures that are available to land force elements to disrupt and dislocate AWS and 

protect the human capital that forms our COG.     

 

DEFINITIONS 

 

Where possible, the definitions in the Robotic and Autonomous Systems Strategy (RASS)
4
 

are used throughout this paper. The term Autonomous Weapon System
5
 is added. An AWS is 

any UGV, UAV or UxV which is armed with a kinetic weapon, and has the ability to use it 

without a human directly approving each engagement.  

 

The levels of autonomy given on page 27 of the RASS, namely the Automatic, Autonomic 

and Autonomous classifications are difficult to specify clearly. In that example there was 

perhaps too much specification of how machine autonomy was achieved, and not specific 

enough about the tasks being automated. For example a Roomba is a highly autonomous 

floor cleaner, it is very reactive, applying standard heuristics rules, but is robust in a dynamic 

environment and requires little human interaction. It doesn’t fit neatly into the autonomy 

specification given in the RASS
6
. As a result we contribute a classification scheme for AWS 

in annex B based on SAE International’s levels of driving automation for on-road vehicles
7
. 

This attempts to be a little more specific about the handover of tasks between human and 

machine, but it does not specify the mechanism of implementation or the performance 

standards required to be met.  

 

ETHICAL ISSUES 

 

AWS immediately provokes ethical questions that need to be addressed. The International 

Committee of the Red Cross (ICRC) has published findings on the limits of autonomy in 

weapon systems
8
. They found that while AWS offered certain military advantages over 

unmanned systems, unpredictability in their outcomes presented challenges to safety and 

efficiency in military operations. They found that humans needed to maintain control over 

three main categories: 
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1. Controls over the weapon systems parameters. This includes temporal and 

spatial limits on AWS operation to constrain their effects, and an allowance for 

failsafe and deactivation  mechanisms. 

 

2. Controls on the Environment. Use in environments where distinction in targets 

can be achieved, taking into account both the environment and the performance 

of the AWS. This is also dependent on the capability of the AWS to perform 

accurate discrimination between combatants and non-combatants. 

 

3. Controls through human-machine interaction. Users must be able to supervise 

AWS and intervene in its operation, by overriding functions, aborting a task, or 

deactivating AWS. 

 

These are interesting constraints on the use of AWS that can be applied with different 

priorities depending on the capabilities of the system. For example, an AWS with an inferior 

target identification system may only be unarmed, armed with non-lethal measures or 

constrained to environments not containing civilians. One of the key findings is that ethical 

employment depends on the technical capability of the robot and also its employment
9
 rather 

than whether AWS presents an inherent good or evil.  

 

Ron Arkin, a veteran roboticist and robot ethicist
10

, argues
11

 that AWS can provide a net 

benefit to the ethical conduct of war. Outperforming humans in their ability to adhere to 

International Humanitarian Law (IHL), since robots have no inherent instinct to survive. This 

eliminates emotional responses such as fear, guilt and revenge that can trigger excesses in the 

use of force and other criminal behaviour. LWD 1 also identifies fear as one of the reasons 

humans make mistakes
12

. Additionally, AWS have the potential to objectively assimilate new 

information conditioned in prior experience that is not affected by combat stressors. 

Potentially producing a rational and consistent decision-making process, something humans 

find very difficult
13

.   

 

Professor Arkin also identifies some prevailing counter arguments to the employment of 

AWS. The most notable argument is a reduced threshold for entry into conflict between 

states. In the distant future, if no citizen need be a casualty in war, what will be the barriers to 

conflict? Answerable to their citizens, will democracies’ wars of the future fight only to the 

last robot, human casualties being too expensive: politically, socially and literally? Will these 

AWS enable authoritarian figures to dispense with the trappings of democracy: universal 

suffrage,  healthcare and education when citizens hold no value as combatants? Or will these 
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things be even more important as a country’s fortunes are increasingly tied to industrial 

output, as opposed to raw manpower, requiring a skilled and engaged workforce? 

 

Multiple Tradeoffs. The path this paper charts is full of ethical dilemmas. There is no simple 

solution. The ethical employment of AWS centers around the risk of failure in a particular 

robot configuration and whether that risk can be managed to not violate IHL. It also depends 

on the character of the humans commanding AWS, whether they too will abide by the IHL. 

Considerations include: the characteristics of the AWS platform, the task and risk to non-

combatants.  Technical considerations and a description of the characteristics of AWS will 

now be the focus in the rest of this paper. 

 

TECHNICAL BACKGROUND 

 

It is not the goal of this paper to go deeply into the technical foundations of field robotics. 

Instead, it will give sufficient insight that can inform and characterise some of the limitations 

that are inherent in RAS and AWS, and to understand the capabilities that currently exist. 

Annex A of this submission provides a little broader treatment of the key technical areas, but 

for a deeper treatment the footnotes and bibliography contain good references.   

 

Characteristics of Artificial Intelligence 

 

Artificial Intelligence (AI) are the ways and means of making a machine respond to its 

environment, without human intervention. For this paper I am considering AI that does a 

single task well, such as object detection, navigation or state estimation, and provides an 

output in a useful timeframe. These tasks form individual building blocks that must be strung 

together and deployed to a machine to create autonomy. This is in contrast to an artificial 

general intelligence, a capability that is currently science fiction
14

.  The characteristics of AI 

are: 

 

● Learned models are blackboxes. Humans can conceptualise the relationship 

between two things easily: we can draw a graph. However our ability to reason about 

the relationship between multiple parameters rapidly deteriorates as the number of 

parameters increases beyond three. Most modern AI utilises tens of millions of 

parameters for tasks like image recognition. This huge dimensionality makes it hard 

to understand how an AI function reaches its outputs, how correct the output is and 

what its outputs will be for any given input. At the moment, the best we can reason 

about is the dataset the algorithm is trained on, what the distribution of data points is 

in that dataset and how well the algorithm performs on a similar but unseen validation 

dataset. 
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● AI is compute intensive. Parameters are just numbers that must be operated on, that 

is: added, subtracted, divided or multiplied. The large numbers of parameters 

discussed above must be operated on multiple times for any one inference. Depending 

on the algorithm, this computation can be ported to a parallel processor, or done 

though some efficient mechanism on a cpu, or just take a long time to compute.  

 

● Data is paramount. All algorithms require data as an input. Without data,  an 

algorithm cannot be refined or optimised. Data is used, in the case of online 

navigation, in accordance with some rules of a physical model. Or it can be used for 

learning appropriate outputs for given inputs (supervised learning), or used to find 

relationships between inputs (unsupervised learning). Finally it may just be a bunch of 

reward experiences from actions undertaken whilst following some policy 

(reinforcement learning). Data is paramount, without good data there is no AI. 

 

● Metrics should be multiple and defined upfront. The performance of any AI must 

be measured. Unfortunately due to the fact they are mostly blackboxes, reasoning 

about their function, explaining how they come up with their outputs can be very 

difficult. Heuristic methods have less of a problem as they are explicitly designed and 

not learnt. However both need to have metrics or conditions that can be used to 

measure their output performance. Typically, performance against a known output or 

ground truth is used to evaluate algorithm performance. 

  

● Generalising to every situation is very hard. There is usually a distribution of 

examples that is considered during generation of the algorithm, whether it be by 

design or learning or a combination. This takes into account the assumptions made 

during design, the distribution of examples in the training data etc. Algorithms can 

become very good at producing usable responses to similar situations, however if an 

algorithm meets an unanticipated or novel situation, its output can often be 

completely inappropriate.   

 

Characteristics of AWS 

 

Mathematics. All autonomy is mathematics. All inputs are reduced to numbers, operated on 

by algorithms that are collections of basic mathematical operators, and all outputs are 

numbers. These numbers represent images received by a camera, points from a lidar,   or 

frequency of voltage changes going to motors. Numbers represent everything important to the 

robot, comprising the entirety of its knowledge. Therefore if there is any desired autonomy, 

its fundamental nature must be reduced to numbers and algorithms.  

 

Measured uncertainty. Probabilistic methods are used almost universally in state estimation. 

This gives not only an expected value of a robot’s state, but also the probability of the robots’ 

other states. This is useful when fusing unexpected data. If uncertainty is measured, the 
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degree to which the new data should be integrated into the system is determined by 

probability theory.  

 

Behaviours. What behaviours are required by AWS? Typically heuristic behaviours are 

hierarchical: simpler one-dimensional motor schemas are driven by more complex, task based 

behaviours to determine navigation. Behaviours can be combined in many different ways to 

produce a complex autonomy. This includes navigational behaviours to move to a goal, 

follow a path, avoid obstacles, de-collide from obstacles
15

, scan the environment for targets
16

, 

hide, and cooperate with other robots to achieve an objective. This includes learned 

behaviours
17

.  

 

State Estimation
18

. Determining the location of a robot in space is necessary for higher level 

autonomy and basic movement. State estimation can also produce maps as part of the 

process. State estimates suffer from noise, random perturbations in value, and bias. Most state 

estimation techniques try to estimate both these values, which they use to infer a most likely 

pose, as well as uncertainty of that pose. A robust state estimate should also respond well to 

the kidnapped robot problem
19

, where the robot is required to relocalise after being 

transported to a new location. 

 

Targeting. Currently the best object detection, recognition and identification algorithms are 

based on Deep Convolutional Neural Networks (DCNN). They are black boxes in that they 

are explainable only with reference to the training distribution, which state of the art methods 

can generalise quite well. Their performance deteriorates badly on data that is not represented 

well by the training dataset, and they are sensitive to high frequency noise.  

 

Communications. Robots are capable of generating large amounts of data. The main 

challenge of human-on-the-loop implementations, will be to physically transmit the data 

required for someone to review and intervene. Balancing the data needs, the link bandwidth, 

whilst also being robust to topography is challenging. Mesh, relay and satellite networks 

provide benefits in overcoming the topological constraints of UHF communications. Though 

as a matter of principle, robots should not be reliant on their comms and non-RF 

communications should be considered as a backup. 

  

Natural Language Processing (NLP) and speech-to-text processing of voice commands may 

also be an option where appropriate. Current systems require processing that is usually in 

excess of the capabilities of edge devices such as robots. Typical implementations require a 

link to cloud-based computation to be realised. State of the art methods rely heavily on 

                                                 
15

 Arkin, Behaviour Based Robotics, 66–120. 
16

 Arkin, 270–302. 
17

 Arkin, 306–28. 
18

 Thrun, Burgard, and Fox, Probabilistic Robotics, 20. 
19

 Thrun, Burgard, and Fox, 194. 



        AWS for the Land Domain 

       Peter Milani (petermilani80@gmail.com) 

7 

DCNNs and suffer from similar drawbacks as articulated in the section on Targeting and in 

annex A.   

 

EXPLOITATION OF AWS 

 

The AWS preference in the short to medium term, is for small lightweight robots greater than 

20kg but probably less than 100kg. These may be armed, and given their size and 

capabilities, probably only with small calibers. The weaponization of the system is kept in 

line with the shortcomings of the key functional capabilities of targeting, navigation and 

behaviours, such that the risk is minimised if a failure occurs. If the robots can’t be trusted, 

then they shouldn’t be capable of great and far-ranging destruction. 

 

The principles of concentration of mass and combined arms teams will continue to be 

important in automated forces. Whilst human-machine teaming is one way to achieve this, a 

single AWS type will not be sufficient or invulnerable when operating alone. In the same way 

that mounted and dismounted forces complement each other, a range of AWS will need to be 

fielded to meet differing situations. This implies a balance between offensive and counter 

AWS capabilities. This paper will consider how AWS could be fielded within the decade to 

separate humans from the most dangerous of tasks.  

 

Close Combat. Firstly in close combat we could expect a single soldier to control multiple 

robots. Controlling multiple robots takes a lot of work, even when autonomy helps basic 

robot functions. When supervising five robots, an operator is not capable of doing much else, 

but commanding and supervision.  

 

This means that for the deployment of robots by ground forces, say an infantry section sized 

human grouping (8 people). There would need to be the following grouping: 

 

● Maneuver Team. Possibly up to half the human grouping would be in the direct C2 

of robot teams, with no hierarchical grouping of robots this would be about four to 

five robots per person, nominally 20 AWS deployed. They are responsible for the 

marshalling and supervision of the robots through the mission.  

 

● CSS Team. Robot-human teams would be augmented by automated resupply. This 

could include automated battery changing of AWS, unloading, startup and launching 

sequences. However there will be other functions not easily automated such as 

maintenance, and weapon replenishment. There may be up to two persons in this role.  

 

● C2 Team. The C2 team would backup the supervision of robots and maintain the link 

to higher HQ. They provide additional spotting and oversight of the deployment 

through UAV and direct observation. They may also manage the communications 

across the group by ensuring relay communications nodes are located for maximum 

effectiveness. It would include the section commander and one other.  
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It is not expected that the humans would take any part in the close combat, but instead would 

choose a secure assembly area to control their team. The AWS would form the bulk of the 

assault grouping. Other, flanking human elements would provide Support by Fire and other 

tasks. If they were to form an assault grouping, for safety, it would be on a separate axis.  

 

The section will require integral transport, including medium trailers to carry all the 

equipment and robots. We could envisage an automated, containerised solution for loading, 

unloading, battery swapping, and replenishment. It may also require integral power 

generation for recharging batteries etc. Alternatively these could be replenishment items with 

the recharging/refueling occurring at First or Second Line CSS.  

 

Amphibious Operations. AWS would be ideal to fill the first wave assaults in contested 

landings. We can look to the many examples throughout WWII in the Pacific Theatre as why 

we would only want to send humans in after a sufficient beachhead has been secured. As a 

Joint activity, we could consider the land component similar to the Close Combat example 

above, with the difference that the human supervisors would be sitting over the horizon in an 

Amphibious Ship such as the Landing Helicopter Dock (LHD). In this instance, satcomms 

would be the only viable method of feedback on the landing.  

 

The ship to shore delivery mechanism may be automated. Automated landing craft may 

deliver dozens of AWS per load, traversing from the LHD to the Beach Landing Zone (BLZ). 

These automated landing craft may return for reload, or move off to the side to make way for 

follow on landing craft. In a GPS denied environment, localisation of the landing craft 

becomes a challenge. Many of the techniques available to ground based RAS do not work on 

the open ocean. Automated Celestial Navigation
20

 would be an avenue to explore for 

localisation. Closer to the BLZ, visual based methods could take over to localise against the 

BLZ plan and bring the landing craft to the beach for disembarkation of multiple AWS.  

 

Screens and Guards. Ground AWS can have a lower detection signature and may hold an 

advantage over UAVs in not revealing our force posture. AWS could provide mobile screens 

to detect and report on enemy movements from positions considered too precarious to station 

human forces. Alternatively, they could provide additional security to forward deployed 

forces, through early warning and delay.  

 

AWS could also be employed to assist human Intelligence, Surveillance and Reconnaissance 

(ISR) elements to break contact. Just before being decisively engaged, a human screening 

force could deploy AWS in defendable locations. These AWS could defend or delay 

depending on the capability of the autonomy, allowing  human forces to keep on withdrawing 

to the main body.   
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These applications can obviously be applied for the security of any isolated force element. 

Armoured Fighting Vehicle (AFV) hides, Gun Lines and a lot of other tasks can all benefit 

from greater sensor coverage, situational awareness and combat power. The ability of AWS 

to assist in security during rest and refit periods would be a key benefit.   

 

Rear Area Security. Command and Control (C2) and Combat Service Support (CSS) 

elements are usually underprotected, typically because the manning associated with C2 and 

CSS are preoccupied with their primary function. The space required to fit a CSS element is 

many times larger in comparison to what a similarly-manned infantry unit would be expected 

to defend. This usually means much of the perimeter is unsecured.  

 

AWS could be used for Screen and Guard tasks around CSS and C2 elements. They are also 

good locations as initial integrators of RAS. The relatively static nature of second line 

support areas and access to power, makes them ideal as an early adopter and demonstration 

location. 

 

Conclusion. As AWS improve in capability and usefulness, they will grow to fulfill most 

tactical tasks. The list above targets applications that are particularly dangerous, or such an 

unsolved problem that AWS will immediately fill the gap. However, these exploits would be 

enhanced with action along lines of effort not related to the tactical employment of AWS. We 

next describe the lines of effort that will help form AWS into a deployable capability. 

 

ENABLING LINES OF EFFORT 

 

In this section, auxiliary steps to ensure the timely development and sustainment of AWS are 

considered. These are activities that can start immediately. 

 

Data Collation.  

 

As articulated, data is king when it comes to AI, particularly Machine Learning. A concerted 

effort to generate, manage and collate data useful for AI development should be undertaken 

ADF-wide. For AWS Army’s data would be most valuable, for example:  

 

● Image data required for target recognition. Most units contain a unit photographer, 

these members should be constantly increasing the size of the database with imagery, 

during every training activity. They should be tasked with collecting imagery off-site 

to help reduce bias in the dataset. ADF personnel sometimes represent a latent 

workforce that could assist with labelling to those datasets, which is usually a 

somewhat tedious task.  

 

● Datasets for decision making. Reinforcement Learning is a fairly data inefficient 

method for learning new behaviours. Using human experience to seed the RL policies 

is a well documented approach. Army in particular has significant professional 
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education methods during career courses and in-unit training focusing on tactical 

decision making. Digitising these tactical exercises without troops (TEWTs) and 

quick decision exercises (QDEs), will provide great examples for AI and also a 

valuable training tool for professional development. 

 

● Capturing instrumented exercise data. The Combat Training Center - Live (CTC-

L) instruments its exercises so that most of the activities in the exercise can be 

examined later as part of a learning activity. The captured data contains information 

on individual and vehicle movements, weapon discharge and casualties sustained. As 

this data is already digitised it would be a great source to understand issues such as 

terrain, weapon effects, tactical behaviours and logistics.  

 

This is not an exhaustive list, but it should be noted that training the AI algorithm is only a 

small part of the overall effort to get a good autonomous response. Data management, 

collation and critical analysis are required to ensure that we understand and can trace the 

dataset for the AI. This leads to an overall better chain of evidence, and to understand what 

an AI can do and why it fails. 

  

Constant RAS exercising 

 

The ADF should aim to undertake constant exercising of autonomous systems by industry 

and research organisations. This includes activities like Autonomous Warrior 18, but also 

more frequent biannual activities. This doesn’t just relate to the defence prime contractors, 

but to anyone who can field a robot. As indicated in the DARPA SubT Challenge,  a large 

design space exists and maximising the number of participants is good way to understand the 

challenges. The DARPA Offensive Swarm Enabled Tactics (OFFSET)
21

 executed this in a 

series of six-month sprints, across virtual and systems domains to address issues around the 

tactics, techniques and procedures for exercising autonomous swarms.   

 

 

Foster greater industrial capability 

 

The loss of Australia’s manufacturing base over the last 40 years challenges our ability to 

support a long term, robotic enabled force. Conceivably, stockpiles of compute, actuators and 

battery types could be made, however, we could end up with obsolete parts in a short time, 

and shelf life is important. Apart from software and power systems, it is hard to find 

Australian companies providing components necessary for robotic platforms.  

 

Component Classes from outside Australia 
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● Compute and other semiconductors are sourced from a very few global companies 

like Intel, Nvidia and Samsung from silicon foundries in the USA, Taiwan, South 

Korea, and Japan 
22

. 

● Sensors such as cameras, inertial measurement units (IMUs), lidars (excluding 

Baraja
23

) 

● Electric actuators, such as motors, servos or linear drives. 

● Hydraulic actuators except for hydraulic cylinders. 

● Power sources, internal combustion engines. 

 

Component Classes from inside Australia 

 

● Robot chassis. 

● lithium batteries
24

, hydrogen fuel cell technologies
25

 

● Power electronics.
26

 

● Software. 

● Engineers and Researchers. 

 

In general, a greater investment in RAS technologies should foster greater demand in the 

above components. Most of the components will come from overseas. There needs to be a 

whole of government approach to ensure sufficient industrial capacity to maintain sovereign 

control of our AWS. Alternatively, excellent supply lines to Japan, Korea, Taiwan and the 

USA need to be maintained.  

 

COUNTER RAS 

 

At the dawn of the tank during the Somme in 1916, German infantry quickly learned the 

machines were impervious to their weapons. However, after the initial abortive uses of tanks 

gave away the strategic surprise, the Germans innovated on tactics and used whatever 

weapons they had on hand: arming with SmK rifle ammunition that had effects on tank 

armour, forward deploying field artillery batteries in the direct fire role, innovating with the 

anti-tank ditch and flooding no-man's land
27

. Subsequently, they developed AT rifles. There 

was very little in anti-tank capability initially, but it was innovated from existing equipment 

and performed reasonably well until tanks were used in mass and in combined arms teams.  

 

It took 20 years and a world war for tank design to converge to the basic design balance of 

armour, mobility, firepower and communications in use today. 103 years on from their first 

employment we could ask for a different technological threat: what do we actually have now 
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that can assist in the defeat of a RAS attack. Several possibilities for tactical land combat 

spring to mind. 

 

Greater All-corps Anti Armour Capability. Any ground based robot fielded will likely be 

resistant to current small arms fire. If massed AWS are expected, single shot throwaway 

weapons such as M72 will not provide the weight of fire required for multiple targets. Javelin 

systems may similarly be overwhelmed by the number of targets. The broad scale equipping 

of the force with 40mm HEDP natures would provide a relatively cheap, effective and 

persistent response, with standoff and penetration beyond that of 5.56mm natures. For AWS 

it is unlikely that they will be equipped with a survival instinct, that is they will not be able to 

be pinned by effective fire. Whilst tactical autonomy should be expected, only direct hits will 

disrupt an AWS attack. A greater use of anti-materiel rifles would also be suitable additions 

to the counter-RAS suite, though are limited by size and utility in other tasks. 

 

Short-range anti air capability. Aerial AWS also poses a threat. Survivability and payload 

in these systems is sacrificed for maneuverability and traversability. A marsupial application, 

where a UAV is launched for an attack from the back of a UGV, can mean troops can face a 

very selective, aerial adversary capable of hunting below the treeline. Such systems can move 

quite nimbly, and a 40mm canister or splintex-type nature should be developed for use in 

bringing down these Air-AWS. Shotguns would be a decent backup.    

 

Increased Obstacle building focus. Unless facing full-size weapon systems such as 

optionally crewed AFVs, physics would dictate that wire and ditches would form obstacles 

for lighter weight AWS. Netting would be suitable obstacles for defeating Aerial AWS. 

Smoke and camouflage will interfere with the operation of sensors such as cameras and 

lidars. Also, unless equipped with sonar or bump sensors, cameras and lidar have a difficult 

time detecting glass.  

 

EW Attacks. Electronic Warfare (EW) needs to extend to wider bands beyond Radio 

Frequencies (RF), to optical and algorithmic countermeasures. Communication is a feature of 

robots, they are also laden with other electronics. Traditional RF-EW has a role in detecting 

and tracking robotic formations, finding C2 centers. Though RF may be low power and 

below the noise threshold at any decent range.  

 

Outside RF, detecting NearIR laser light from lidar equipped systems can identify their 

location, as well as sound from sonar equipped systems. Electronic Attack across the 

spectrum could be used to destroy optical sensors by blinding them with lasers, and 

potentially interfering with other sensors in the vehicle. GPS spoofing or jamming will be a 

core function to eliminate the use of basic COTS platforms. 
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Finally Deep Convolutional Neural Networks (DCNNs) are sensitive to small high frequency 

perturbations in the input. In image recognition, these are so called adversarial attacks
28

. They 

cause the algorithm to incorrectly classify objects in images. Newer personnel and vehicle 

camouflage patterns could incorporate some of these features. Typically such attacks are 

highly dynamic, and the “newer camouflage” may just consist of replaceable stickers as the 

attack evolves. 

 

Distance. If possible, trading space for time may be a viable alternative. One of the unstated 

characteristics of RAS is that they fail. So if possible, give them more room and time to get 

lost, stuck, run out of power or otherwise suffer mechanical or electrical failure. It is likely 

they will do so at a greater rate than a human or animal adversary. 

 

CONCLUSION 

 

AWS must be developed so that Australian forces are not faced with the dilemma of 

sacrificing people or the mission fighting an adversary armed with AWS. The ethical 

employment of AWS must allow for discrimination between combatant and non-combatant. 

Where this cannot be achieved by autonomy to the necessary precision, at least physical 

separation of combatants from non-combatants is required. Finally the behaviours that govern 

the AWS’ actions need to be commensurate with the tasks given.  

 

AWS main applications in the land domain will be for close combat and screening of 

vulnerable force elements. As their autonomy grows, so will the range and complexity of 

tasks that can be assigned. Crippling limitations in target discrimination will curb any 

widespread deployment of very heavily armed systems, so the majority will usually be fairly 

lightly armed. Counter-AWS measures could be achieved through 40mm natures for both 

ground and air types, and more widespread deployment of anti-material rifles.   

 

AWS will perform best when fielded in combined arms teams. Currently, human machine 

teams will be tightly integrated. As Autonomy improves so too will the hierarchical nature of 

teams. There is great potential to exponentially increase the combat power available to 

individuals when wielding AWS. The reliability and predictability of state estimation, 

behaviours, target discrimination and communications just need to live up to that potential.  

 

ANNEXES 

A. Extended Technical Background 

B. AWS Levels of Autonomy 
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Annex A To 

AWS for the Land Domain 

 

EXTENDED TECHNICAL BACKGROUND 

 

Artificial Intelligence 

 

AI is a catchall phrase to describe any method by which a man-made object does something 

smart and acts in order to achieve some goal in the world. In broad terms, AI for robotics can 

be divided into subsets such as Heuristic Methods, Machine Learning, Natural Language 

Processing, Reinforcement Learning and Probabilistic Methods.  

 

Heuristic Methods 

 

Heuristic or Rule-based methods are common approaches used to achieve autonomy in 

robots. The algorithm and its parameters are determined by design based on principles of 

physics and maths. They are engineered by humans to meet the requirements and 

specifications that are required by the system. Whilst determinism for known input is shown, 

most heuristic methods can manifest emergent behaviour, due to the interaction of multiple 

heuristics or new environments providing unforeseen situations. They are used for control 

functions, behaviour generation and navigation
29

 to name a few applications.  

 

Machine Learning (ML) 

 

Machine Learning covers a large number of algorithms whose parameters are determined by 

data. There are two broad families based on parameter optimisation: 

1. Supervised. Desired outputs for a given input are provided to an optimiser which aims 

to minimise the error between the outputs of the algorithm and the example data.  

2. Unsupervised. The algorithm deals with unlabeled data sets and tries to group or 

cluster the data so that Like Data is close and Unlike Data is distant.  

 

Deep Convolutional Neural Nets (DCNN or Deep Learning) are mentioned specifically due 

to the utility in achieving state of the art in many ML tasks. It is important to note that most 

of the algorithms were developed in the 1980s. Their current resurgence and performance is 

due to availability of extremely large quantities of labeled data, availability of generally 

programmable parallel processors. Which makes them accurate and fast to execute compared 

to other methods. 

 

They are also a universal function approximator in that they can be used to approximate any 

general function
30

, provided enough training examples are provided that accurately describe 

the distribution of the function inputs to outputs. Outside that training distribution, their 
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performance is undefined. Typically when training, the learned model is evaluated on a set of 

inputs not in the training distribution, this is used to evaluate how the model can be expected 

to perform on new data. They are routinely applied across AI in areas such as Image 

Processing, Reinforcement Learning, Natural Language Processing. But as a general function 

approximator they can or have been applied nearly everywhere sufficient labeled data is 

available.  

 

DCNN can be sensitive to high frequency pertubations in the input signal, so called 

Adversarial Attacks 
31

. Such changes have been shown to cause the DCNN to fail. For 

example, in an image classification task, it could cause misclassification of the image. Early 

Adversarial Attacks required knowledge of network architecture as well as the parameters, 

however there are some black box attacks, which require no specific knowledge. It has been 

shown that a suitable remedy to innoculate a network against adversarial attacks includes 

filtering images, and training the network in an adversarial environment. 

 

The methods above are optimisations, where the objective is to try to minimise the error 

against some metric. There is another method that instead uses a game between a generator 

and a discriminator to learn the distribution of objects from data. The Discriminator tries to 

learn to differentiate between true and fake images, minimising the loss from errors in that 

task. The Generator generates fake images from random noise such that it tries to fool the 

Discriminator, for an inverse objective. These are the Generative Adversarial Networks 

(GANs)
32

. They provide a new way of learning a distribution and the concept of a game 

between the Generator and Discriminator is an architecture that is yet to be fully exploited
33

. 

 

Reinforcement Learning (RL) 

 

Reinforcement Learning aims to learn from experience in order to maximise the future 

reward for a selection of possible actions, given the current state
34

. They can be formulated 

into many different architectures which work on related concepts
35

. A key part is to try and 

anticipate the reward for a given situation and action (the Q function). This is usually 

achieved by measuring the state, applying actions according to the best option given by the 

existing Q function and measuring the rewards returned. There is a period between sets of 

these trials in which the Q function estimator is optimised to improve its prediction of the 

reward. The updated Q function is then applied in another epoch of experiences.  

 

Current RL methods require many training epochs because rewards do not occur after every 

action, they may only occur after several hundred actions, e.g. when the agent wins, loses or 

scores a point. This makes them impractical to implement on real robots as the number of 

                                                 
31

 Haohui, “Adversarial Attacks in Machine Learning and How to Defend Against Them.” 
32

 Goodfellow et al., “Generative Adversarial Networks.” 
33

 Rocca, “Understanding Generative Adversarial Networks (GANs).” 
34

 Lambert, “Convergence of Reinforcement Learning Algorithms.” 
35

 Lambert, “Gists of Recent Deep RL Algorithms.” 



        AWS for the Land Domain 

       Peter Milani (petermilani80@gmail.com) 

19 

examples required exceeds usual physical reliability limits. Most implementations that target 

robots do so by simulation, speeding up the time taken to converge, and eliminating 

reliability issues. As the simulated environments do not replicate the real world environment 

accurately, most RL policies need to handle the simulation limitations. Usually the cheapest 

method is by randomising most of the parameters of the simulation, so that when confronted 

by the real world, its differences to the simulated environment appears as additional noise to 

the policies it has learned.  

 

Using simulation greatly reduces the number of real-world tuning examples required and,  if 

the limitations of the simulation have been addressed, have produced good results in domains 

such as robot grasping
36

 and robot control
37

.  

 

Probabilistic Methods 

 

Probabilistic methods aim to estimate parameters from data not as point estimates with 

certain values, but as an underlying distribution of possible values, observed at various times 

as measurements by a sensor. Probabilistic methods estimate both the expected value of the 

parameter (mean) and the uncertainty in the parameter value (variance). As new information 

becomes available, it is used to update the estimate for the parameter
38

.  

 

These methods are powerful in that they can not only estimate what is known, but also give a 

measure for how well it is known . This quality of knowledge is given by the variance in the 

distribution. They do rely on the model being explicitly designed for inference which can 

make explaining the outputs of the model easier, and can improve the predictability of the 

outputs.  However as these models scale up, dimensionality makes them harder to interpret 

and compute. However as the uncertainty is explicitly stated, often a simpler model, with 

uncertainty measured will provide just as usuable a model, as one that is more complicated. 

 

A key benefit is that the models can contain parameters which are important but not directly 

observed, so-called hidden variables. Other parameters which are observed will have some 

relationship to the hidden variable as specified by the model. As observations are made, 

likely states for the hidden variable can be estimated that are consistent with both the 

observation and the model. A military example might be the estimation of an enemy’s 

location, mission and intent, based on the observation of receiving fire by a particular weapon 

system in a particular direction, given an enemy situational template, and other prior 

knowledge.  

 

Probabilistic methods are widely used for robotic state estimation, sensor fusion and map 

building
39

, target tracking to name but a few applications, but is also widely used across 
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science, politics, economics and social science
40

.  These methods are computationally 

intensive but not easily parallelizable which can make inference computationally intense. 

 

Natural Language Processing 

 

NLP is the processing and factorisation of spoken or written language by a machine. 

Typically approaches aim to find relationships of words that go together 
41

or to predict the 

next word given a string of words
42

. There are various challenges in processing key terms in 

natural language for relationships in statements, understanding what that language actually 

implies and processing in or parsing it into commands that a robot can respond to
43

 
44

. 

Additionally NLP architectures based on deep learning are much more expensive to compute, 

due to the requirement to keep context and memory, making them hard to deploy to low 

power environments
45

.  

 

More Info 

 

The ICRC has released a thoroughly excellent article
46

 on the technical aspects of the  

application of AI and Robotics to AWS. Addressing whether the current state of the art in AI 

and Machine Learning is sufficiently robust enough to deploy to AWS. They draw on 

commercial experiences in the development of self-driving cars, and the ability of the current 

technology to be certified as being predictable and reliable.    
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Annex B To 

AWS for the Land Domain 

 

AWS LEVELS OF AUTOMATION 

 

This table is based on the levels of automation specified in SAE International’s J3016 Taxonomy 

and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems
47

. It 

aims to separate the  autonomy description from the methods used to achieve autonomy. It also 

specifies what that autonomy looks like against various functional areas, the breath of scenarios 

it is valid for and also quantifies the frequency of human supervisory involvement and its nature. 

It is likely that a single system may contain aspects of a variety of autonomy levels. 

 

 

Lvl Name Narrative Behaviours Decisions  Targeting Failure 

Recovery  

Scenario Supervisory 

oversight 

Human 

interaction 

frequency 

0 No 

Automation 

Full time performance of 

human crew driving all aspects 

of the machine. 

Human Human Human Human n/a A machine 

function 

(crew 

position) 

constant 

1 Control 

Systems Only 

Optionally Crewed and crew 

assistance automation (eg Tank 

Fire Control Systems)  

System 

controls 

Human  Human Human Some 

scenarios 

1 machine constant 

2 Partial 

Automation 

System takes over local 

navigation, senses the 

environment, human sequences 

techniques (GoTo) to achieve a 

task 

System 

implements 

tactical 

techniques. 

Human 

specifies 

tactical 

techniques  

System 

acquires, 

Human 

approves, 

System 

engages 

System 

basic 

recovery, 

Human 

fallback 

Some 

scenarios 

< 5 machines minutes 

3 Conditional 

Automation 

System implements tactical 

techniques as specified by 

humans to meet mission.  

System 

implements 

tactical 

tasks 

Human 

specifies 

tactical 

tasks 

System 

engagement 

conditional 

on 

predefined 

parameters 

System 

more 

robust to 

failure, 

Human 

fallback 

Some 

scenarios 

machine team tens of 

minutes 

4 High 

Automation 

System can sequence tactical 

tasks to meet the mision and 

respond to changes in situation  

System 

sequences 

tactical 

tasks to 

achieve 

mission 

Human 

specifies 

mission. 

System 

engagement 

conditional 

on task 

System 

automated 

recovery 

from 

failure 

Some 

scenarios 

teams of 

teams 

hours 

5 Full 

Automation 

System can sequence tactical 

tasks to meet the mision and 

respond to changes in situation  

System 

sequences 

tactical 

tasks to 

achieve 

mission 

Human 

specifies 

mission. 

System 

engagement 

conditional 

on mission 

System 

automated 

recovery 

from 

failure 

All 

scenarios 

teams of 

teams 

tens of 

hours 
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